Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
1.
PLoS Pathog ; 20(4): e1012141, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626263

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus etiologically associated with multiple malignancies. Both latency and sporadic lytic reactivation contribute to KSHV-associated malignancies, however, the specific roles of many KSHV lytic gene products in KSHV replication remain elusive. In this study, we report that ablation of ORF55, a late gene encoding a tegument protein, does not impact KSHV lytic reactivation but significantly reduces the production of progeny virions. We found that cysteine 10 and 11 (C10 and C11) of pORF55 are palmitoylated, and the palmytoilation is essential for its Golgi localization and secondary envelope formation. Palmitoylation-defective pORF55 mutants are unstable and undergo proteasomal degradation. Notably, introduction of a putative Golgi localization sequence to these palmitoylation-defective pORF55 mutants restores Golgi localization and fully reinstates KSHV progeny virion production. Together, our study provides new insight into the critical role of pORF55 palmitoylation in KSHV progeny virion production and offers potential therapeutic targets for the treatment of related malignancies.

2.
Front Cell Infect Microbiol ; 14: 1381877, 2024.
Article in English | MEDLINE | ID: mdl-38572316

ABSTRACT

Most of vaccinees and COVID-19 convalescents can build effective anti-SARS-CoV-2 humoral immunity, which helps preventing infection and alleviating symptoms. However, breakthrough viral infections caused by emerging SARS-CoV-2 variants, especially Omicron subvariants, still pose a serious threat to global health. By monitoring the viral infections and the sera neutralization ability of a long-tracked cohort, we found out that the immune evasion of emerging Omicron subvariants and the decreasing neutralization led to the mini-wave of SARS-CoV-2 breakthrough infections. Meanwhile, no significant difference had been found in the infectivity of tested SARS-CoV-2 variants, even though the affinity between human angiotensin-converting enzyme 2 (hACE2) and receptor-binding domain (RBDs) of tested variants showed an increasing trend. Notably, the immune imprinting of inactivated COVID-19 vaccine can be relieved by infections of BA.5.2 and XBB.1.5 variants sequentially. Our data reveal the rising reinfection risk of immune evasion variants like Omicron JN.1 in China, suggesting the importance of booster with updated vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , Breakthrough Infections , Cohort Studies , Immune Evasion , Antibodies, Neutralizing , Antibodies, Viral
3.
HIV Med ; 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38494173

ABSTRACT

OBJECTIVES: Dolutegravir + lamivudine (DTG + 3TC) is a first-line regimen for people with HIV. However, there are still concerns about its efficacy in people with tuberculosis (TB)/HIV due to the lack of available evidence and drug-drug interaction with rifampicin. METHODS: A single-centre retrospective observational case series was conducted in Guangxi Zhuang Autonomous Region, China. We included all people with TB/HIV on combined use of once-daily (q.d.) dosing DTG + 3TC and rifampicin (RIF)-containing anti-TB regimens between 2020 and 2022. HIV-RNA, CD4 cell counts were collected and analysed. RESULTS: In all, 21 people with HIV (PWH) were included in this study. All the PWH were treatment-naïve and told to take DTG + 3TC q.d. with food. The median age was 53 years, and 71.43% were male. A total of 71.43% PWH had baseline viral load (VL) > 100 000 copies/mL, and 33.33% had baseline VL greater than 500 000 copies/mL. Only one PWH had CD4 cell count greater than 200 cells/µL, and the median CD4 count was 20 cells/µL. A total of 16 PWH started DTG + 3TC after initiation of the RIF-based anti-TB regimen, and the other five PWH initiated DTG + 3TC before the treatment of TB. All the PWH had at least 24 weeks of follow-up visits and all of the TB treatments were successful. A total of 20 PWH (95.24%) achieved viral suppression (VL <50 copies/mL). All detected viral loads between weeks 24 and 48 were less than 200 copies/mL. Among the PWH who started DTG + 3TC after the initiation of RIF-based anti-TB regimen, all achieved viral suppression by week 24 except the non-suppressed PWH. CD4 counts were greatly improved after antiretroviral treatment: the median CD4 counts were raised from 20 to 171 cells/µL at week 48. No serious adverse events were reported. CONCLUSIONS: This case series preliminarily validates the efficacy of DTG + 3TC q.d. with food when combined with RIF-based anti-TB regimens in people with TB/HIV.

4.
Environ Toxicol ; 39(5): 3014-3025, 2024 May.
Article in English | MEDLINE | ID: mdl-38317294

ABSTRACT

BACKGROUND: Lung cancer is a very common cancer with poor prognosis and high mortality. Circular RNAs (circRNAs) have been confirmed to be related to the occurrence of lung cancer, and circ_0008133 has been found to be possibly related to lung cancer. METHODS: Expression of circ_0008133, miR-760, and mex-3 RNA binding family member A (MEX3A) messenger RNA (mRNA) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, colony number, migration, and invasion were assessed using cell counting kit-8 (CCK8), colony formation, wound healing, and transwell assays. Glucose consumption and lactate production were detected using commercial kits. Protein expression was measured using western blot. Dual-luciferase reporter assay and RNA pull-down assay were used to analyze the relationships between miR-760 and circ_0008133 or MEX3A. The effects of circ_0008133 knockdown on tumor growth in vivo were examined by the nude mice expriment. Immunohistochemistry (IHC) assay analyzed Ki-67 expression. RESULTS: Circ_0008133 and MEX3A were markedly boosted in lung cancer tissues and cells. Circ_0008133 knockdown decreased lung cancer cell viability, glucose consumption, lactate production, colony formation, migration, and invasion. In mechanism, circ_0008133 might positively regulate MEX3A expression by sponging miR-760. Additionally, knockdown of circ_0008133 inhibited tumor growth in vivo. CONCLUSION: Circ_0008133 accelerated the progression of lung cancer by promoting glycolysis metabolism through the miR-760/MEX3A axis.


Subject(s)
Lung Neoplasms , MicroRNAs , Animals , Mice , Lung Neoplasms/genetics , Mice, Nude , Glucose , Glycolysis/genetics , Lactic Acid , MicroRNAs/genetics , Cell Proliferation/genetics , Cell Line, Tumor
5.
J Virol ; 98(2): e0156723, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38197631

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.


Subject(s)
Core Binding Factor Alpha 3 Subunit , Herpesvirus 8, Human , Latent Infection , Humans , Cell Line, Tumor , Gene Expression Regulation, Viral , Genome, Viral , Herpesvirus 8, Human/physiology , NF-kappa B/metabolism , Virus Activation , Virus Latency , Virus Replication , Core Binding Factor Alpha 3 Subunit/metabolism
6.
Virol Sin ; 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38246238

ABSTRACT

Influenza A virus (IAV) binds sialic acid receptors on the cell surface to enter the host cells, which is the key step in initiating infection, transmission and pathogenesis. Understanding the factors that contribute to the highly efficient entry of IAV into human cells will help elucidate the mechanism of viral entry and pathogenicity, and provide new targets for intervention. In the present study, we reported a novel membrane protein, C1QTNF5, which binds to the hemagglutinin protein of IAV and promotes IAV infection in vitro and in vivo. We found that the HA1 region of IAV hemagglutinin is critical for the interaction with C1QTNF5 protein, and C1QTNF5 interacts with hemagglutinin mainly through its N-terminus (1-103 aa). In addition, we further demonstrated that overexpression of C1QTNF5 promotes IAV entry, while blocking the interaction between C1QTNF5 and IAV hemagglutinin greatly inhibits viral entry. However, C1QTNF5 does not function as a receptor to mediate IAV infection in sialic acid-deficient CHO-Lec2 cells, but promotes IAV to attach to these cells, suggesting that C1QTNF5 is an important attachment factor for IAV. This work reveals C1QTNF5 as a novel IAV attachment factor and provides a new perspective for antiviral strategies.

7.
Int J Biol Macromol ; 260(Pt 1): 129477, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232894

ABSTRACT

It reported a porous material prepared from microcrystalline cellulose (MCC), to achieve rapid preparation of adsorbents. The porous material was characterized by several tools including 1H NMR, FTIR, XPS, and SEM. Two adsorbents were prepared and subjected to adsorption experiments. Dye adsorption experiments show that the adsorption driving is electrostatic interactions and the process is chemisorption. The maximum capacity of Microcrystalline cellulose-g-Poly (glycidyl methacrylate)-Tannins (MPT) reached 191.3 (Methylene blue), 123.7 mg g-1 (Rhodamine B), and Microcrystalline cellulose-g-Poly (glycidyl methacrylate)-Lysine (MPL) attained 425.8 (Methylene blue), 480.7 mg g-1 (Methyl orange). The results were followed the pseudo-second-order (PSO) and agreed with the Langmuir fit model. Adsorption-desorption cycling experiments further indicate that the adsorbent possesses outstanding reproducibility. At last, epoxidized bio-porous materials are positive in the preparation of dye adsorbents with critical adsorption properties.


Subject(s)
Cellulose , Coloring Agents , Epoxy Compounds , Methacrylates , Water Pollutants, Chemical , Coloring Agents/chemistry , Adsorption , Porosity , Methylene Blue/chemistry , Reproducibility of Results , Cations , Water Pollutants, Chemical/chemistry , Kinetics
8.
PLoS Pathog ; 20(1): e1011943, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38215174

ABSTRACT

Deubiquitinases (DUBs) remove ubiquitin from substrates and play crucial roles in diverse biological processes. However, our understanding of deubiquitination in viral replication remains limited. Employing an oncogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) to probe the role of protein deubiquitination, we found that Ovarian tumor family deubiquitinase 4 (OTUD4) promotes KSHV reactivation. OTUD4 interacts with the replication and transcription activator (K-RTA), a key transcription factor that controls KSHV reactivation, and enhances K-RTA stability by promoting its deubiquitination. Notably, the DUB activity of OTUD4 is not required for K-RTA stabilization; instead, OTUD4 functions as an adaptor protein to recruit another DUB, USP7, to deubiquitinate K-RTA and facilitate KSHV lytic reactivation. Our study has revealed a novel mechanism whereby KSHV hijacks OTUD4-USP7 deubiquitinases to promote lytic reactivation, which could be potentially harnessed for the development of new antiviral therapies.


Subject(s)
Herpesvirus 8, Human , Immediate-Early Proteins , Sarcoma, Kaposi , Humans , Immediate-Early Proteins/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Ubiquitin-Specific Peptidase 7/metabolism , Trans-Activators/genetics , Herpesvirus 8, Human/genetics , Virus Replication , Gene Expression Regulation, Viral , Virus Activation , Ubiquitin-Specific Proteases/metabolism
9.
Int J Surg ; 110(2): 1196-1205, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37988416

ABSTRACT

OBJECTIVE: Postoperative staple line leakage (SLL) after sleeve gastrectomy (SG) is a rare but serious complication. Many surgeons routinely test anastomosis with an intraoperative leak test (IOLT) as part of the SG procedure. This meta-analysis aims to determine whether an IOLT plays a role in reducing the rate of postoperative staple line related complications in patients who underwent SG. METHODS: The authors searched the PubMed, Web of science, the Cochrane Library, and Clinical Trials.gov databases for clinical studies assessing the application of IOLT in SG. The primary endpoint was the development of postoperative SLL. Secondary endpoints included the postoperative bleeding, 30 days mortality rates, and 30 days readmission rates. RESULTS: Six studies totaling 469 588 patients met the inclusion criteria. Our review found that the SLL rate was 0.38% (1221/ 324 264) in the IOLT group and 0.31% (453/ 145 324) in the no intraoperative leak test (NIOLT) group. Postoperative SLL decreased in the NIOLT group compared with the IOLT group (OR=1.27; 95% CI: 1.14-1.42, P =0.000). Postoperative bleeding was fewer in the IOLT group than that in the NIOLT group (OR 0.79; 95% CI: 0.72-0.87, P =0.000). There was no significant difference between the IOLT group and the NIOLT group regarding 30 days mortality rates and 30 days readmission rates ( P >0.05). CONCLUSION: IOLT was correlated with an increase in SLL when included as a part of the SG procedure. However, IOLT was associated with a lower rate of postoperative bleeding. Thus, IOLT should be considered in SG in the situation of suspected postoperative bleeding.


Subject(s)
Laparoscopy , Obesity, Morbid , Humans , Anastomotic Leak/diagnosis , Anastomotic Leak/etiology , Anastomotic Leak/prevention & control , Retrospective Studies , Obesity, Morbid/surgery , Surgical Stapling/adverse effects , Postoperative Complications/etiology , Postoperative Complications/surgery , Postoperative Hemorrhage/etiology , Gastrectomy/adverse effects , Gastrectomy/methods , Laparoscopy/methods , Treatment Outcome
10.
Drug Metab Dispos ; 52(2): 126-134, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38050044

ABSTRACT

Cytochrome P450 3A (CYP3A) participates in the metabolism of more than 30% of clinical drugs. The vast intra- and inter-individual variations in CYP3A activity pose great challenges to drug development and personalized medicine. It has been disclosed that human CYP3A4 and CYP3A7 are exclusively responsible for the tertiary oxidations of deoxycholic acid (DCA) and glycodeoxycholic acid (GDCA) regioselectivity at C-1ß and C-5ß This work aimed to compare the 1ß- and 5ß-hydroxylation of DCA and GDCA as potential in vitro CYP3A index reactions in both human liver microsomes and recombinant P450 enzymes. The results demonstrated that the metabolic activity of DCA 1ß- and 5ß-hydroxylation was 5-10 times higher than that of GDCA, suggesting that 1ß-hydroxyglycodeoxycholic acid and 5ß-hydroxyglycodeoxycholic acid may originate from DCA oxidation followed by conjugation in humans. Metabolic phenotyping data revealed that DCA 1ß-hydroxylation, DCA 5ß-hydroxylation, and GDCA 5ß-hydroxylation were predominantly catalyzed by CYP3A4 (>80%), while GDCA 1ß-hydroxylation had approximately equal contributions from CYP3A4 (41%) and 3A7 (58%). Robust Pearson correlation was established for the intrinsic clearance of DCA 1ß- and 5ß-hydroxylation with midazolam (MDZ) 1'- and 4-hydroxylation in fourteen single donor microsomes. Although DCA 5ß-hydroxylation exhibited a stronger correlation with MDZ oxidation, DCA 1ß-hydroxylation exhibited higher reactivity than DCA 5ß-hydroxylation. It is therefore suggested that DCA 1ß- and 5ß-hydroxylations may serve as alternatives to T 6ß-hydroxylation as in vitro CYP3A index reactions. SIGNIFICANCE STATEMENT: The oxidation of DCA and GDCA is primarily catalyzed by CYP3A4 and CYP3A7. This work compared the 1ß- and 5ß-hydroxylation of DCA and GDCA as in vitro index reactions to assess CYP3A activities. It was disclosed that the metabolic activity of DCA 1ß- and 5ß-hydroxylation was 5-10 times higher than that of GDCA. Although DCA 1ß-hydroxylation exhibited higher metabolic activity than DCA 5ß-hydroxylation, DCA 5ß-hydroxylation demonstrated stronger correlation with MDZ oxidation than DCA 1ß-hydroxylation in individual liver microsomes.


Subject(s)
Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System , Humans , Cytochrome P-450 CYP3A/metabolism , Hydroxylation , Glycodeoxycholic Acid/metabolism , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction , Microsomes, Liver/metabolism , Midazolam/metabolism
11.
J Pharm Biomed Anal ; 239: 115882, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38071766

ABSTRACT

Based on our experiences in bile acid profiling, this work developed and validated a liquid chromatography electrospray ionization tandem mass spectrometry method to separate endogenous bile acid isomers and quantitatively determine ursodeoxycholic acid (UDCA), glycoursodeoxycholic acid (GUDCA) and tauroursodeoxycholic acid (TUDCA) in human plasma. The separation was performed on a CORTECS C18 column with the mobile phase consisting of 1.0 mM ammonium acetate and acetonitrile-methanol (80:20, v/v). UDCA, GUDCA and TUDCA were detected in the negative mode on a triple-quadrupole mass spectrometer at the ion transitions of m/z 391 > 391, m/z 448 > 74, m/z 498 > 80, respectively. Phosphate buffer was employed as the surrogate matrix to establish the isotope internal standard corrected calibration curves of analytes. The background-method with a linearity range of 10-200 ng/mL was partially validated to determine the endogenous levels of analytes in blank human plasma, which was incorporated into the validation of bioequivalence-method with a linearity range of 50-10000 ng/mL. The bioequivalence (BE)-method was fully validated with special focus on matrix effects, which have been critically evaluated using the precision and accuracy of quality control samples prepared from the blank human plasma of 12 individuals. It is disclosed for the first time that the BE results of UDCA formulation may yield false results when the method is insufficient to separate UDCA from isoursodeoxycholic acid, a microbial metabolite of both endogenous and exogenous UDCA. The present method has established a milestone for the evaluation of UDCA formulations and is expected to provide a valuable reference for the bioanalytical development of endogenous medicinal products.


Subject(s)
Bile Acids and Salts , Ursodeoxycholic Acid , Humans , Therapeutic Equivalency , Chromatography, Liquid/methods , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/methods
12.
Sci Transl Med ; 15(725): eadh7668, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38055802

ABSTRACT

Targeting angiotensin-converting enzyme 2 (ACE2) represents a promising and effective approach to combat not only the COVID-19 pandemic but also potential future pandemics arising from coronaviruses that depend on ACE2 for infection. Here, we report ubiquitin specific peptidase 2 (USP2) as a host-directed antiviral target; we further describe the development of MS102, an orally available USP2 inhibitor with viable antiviral activity against ACE2-dependent coronaviruses. Mechanistically, USP2 serves as a physiological deubiquitinase of ACE2, and targeted inhibition with specific small-molecule inhibitor ML364 leads to a marked and reversible reduction in ACE2 protein abundance, thereby blocking various ACE2-dependent coronaviruses tested. Using human ACE2 transgenic mouse models, we further demonstrate that ML364 efficiently controls disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as evidenced by reduced viral loads and ameliorated lung inflammation. Furthermore, we improved the in vivo performance of ML364 in terms of both pharmacokinetics and antiviral activity. The resulting lead compound, MS102, holds promise as an oral therapeutic option for treating infections with coronaviruses that are reliant on ACE2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice, Transgenic , Pandemics , Peptidyl-Dipeptidase A/metabolism , Ubiquitin Thiolesterase
13.
BMC Infect Dis ; 23(1): 707, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864131

ABSTRACT

BACKGROUND: This study's objective was to investigate the predictors for severe anemia, severe leukopenia, and severe thrombocytopenia when amphotericin B deoxycholate-based induction therapy is used in HIV-infected patients with talaromycosis. METHODS: A total of 170 HIV-infected patients with talaromycosis were enrolled from January 1st, 2019, to September 30th, 2020. RESULTS: Approximately 42.9%, 20.6%, and 10.6% of the enrolled patients developed severe anemia, severe leukopenia, and severe thrombocytopenia, respectively. Baseline hemoglobin level < 100 g/L (OR = 5.846, 95% CI: 2.765 ~ 12.363), serum creatinine level > 73.4 µmol/L (OR = 2.573, 95% CI: 1.157 ~ 5.723), AST/ALT ratio > 1.6 (OR = 2.479, 95% CI: 1.167 ~ 5.266), sodium level ≤ 136 mmol/liter (OR = 4.342, 95% CI: 1.747 ~ 10.789), and a dose of amphotericin B deoxycholate > 0.58 mg/kg/d (OR = 2.504, 95% CI:1.066 ~ 5.882) were observed to be independent risk factors associated with the development of severe anemia. Co-infection with tuberculosis (OR = 3.307, 95% CI: 1.050 ~ 10.420), and platelet level (per 10 × 109 /L) (OR = 0.952, 95% CI: 0.911 ~ 0.996) were shown to be independent risk factors associated with the development of severe leukopenia. Platelet level < 100 × 109 /L (OR = 2.935, 95% CI: 1.075 ~ 8.016) was identified as the independent risk factor associated with the development of severe thrombocytopenia. There was no difference in progression to severe anemia, severe leukopenia, and severe thrombocytopenia between the patients with or without fungal clearance at 2 weeks. 10 mg on the first day of amphotericin B deoxycholate was calculated to be independent risk factors associated with the development of severe anemia (OR = 2.621, 95% CI: 1.107 ~ 6.206). The group receiving a starting amphotericin B dose (10 mg, 20 mg, daily) exhibited the highest fungal clearance rate at 96.3%, which was significantly better than the group receiving a starting amphotericin B dose (5 mg, 10 mg, 20 mg, daily) (60.9%) and the group receiving a starting amphotericin B dose (5 mg, 15 mg, and 25 mg, daily) (62.9%). CONCLUSION: The preceding findings reveal risk factors for severe anemia, severe leukopenia, and severe thrombocytopenia. After treatment with Amphotericin B, these severe adverse events are likely unrelated to fungal clearance at 2 weeks. Starting amphotericin B deoxycholate at a dose of 10 mg on the first day may increase the risk of severe anemia but can lead to earlier fungal clearance. TRIAL REGISTRATION: ChiCTR1900021195. Registered 1 February 2019.


Subject(s)
Anemia , HIV Infections , Leukopenia , Thrombocytopenia , Humans , Amphotericin B/adverse effects , Antifungal Agents/therapeutic use , Prospective Studies , Induction Chemotherapy , Anemia/chemically induced , Anemia/drug therapy , Leukopenia/chemically induced , Leukopenia/drug therapy , HIV Infections/complications , HIV Infections/drug therapy , Thrombocytopenia/chemically induced , Thrombocytopenia/drug therapy
14.
Biomater Adv ; 154: 213651, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37827021

ABSTRACT

Tannic acid (TA) shell is of great interest for nanodrug design due to its versatile application such as antioxidant, antibacterial, anti-inflammatory. However, evidence is emerging that TA air oxidation in storage stage and unfavorable interactions of TA with electrolyte or protein in drug delivery could bring great challenge for the structure stability of nanodrug. In this study, a smart TA shell of nanomicelles was constructed through phenolic hydroxyl protection strategy, and the antioxidant capacity of nanomicelles maintain stable after 24 days storage. The phenolic hydroxyl protective tannic acid micelles (PHPTA micelles) show excellent performance for combination delivery of azoramide (Azo), dantrolene (Dan), Trazodone (Tra) in accelerated senescence (SAMP8) mice. This study may pave the way for the fabrication of nanodrugs with stable and smart TA shell for oxidative stress relevant diseases.


Subject(s)
Alzheimer Disease , Nanoparticles , Mice , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Alzheimer Disease/drug therapy , Micelles , Hydroxyl Radical , Nanoparticles/therapeutic use
15.
J Nutr Biochem ; 121: 109434, 2023 11.
Article in English | MEDLINE | ID: mdl-37661068

ABSTRACT

Excessive fructose intake is associated with the rising prevalence of nonalcoholic fatty liver disease (NAFLD). The gut microbiome (GM) and bile acids (BAs) are involved in the pathogenesis of NAFLD, but the impact of fructose on their cross-talk is unclear. In this study, adult male C57BL/6J mice were fed a normal diet with tap water (ND) or with 4% fructose in the drinking water (Fru), 60% high-fat diet with tap water (HF) or with 4% fructose solution (HFF) for 12 weeks. Targeted BA analysis was performed in five anatomical sites including the liver, ileum contents, portal serum, cecum contents, and feces. Metagenomic sequencing was performed to explore gut dysbiosis. Within 12 weeks, the 4% fructose diet could initially stimulate gut dysbiosis and BA upregulation in the ileum, portal serum, and cecum when the intestinal and hepatic transport system remained stable without hepatic lipid accumulation. However, the chronic consumption of fructose promoted HF-induced NAFLD, with significantly increased body weight, impaired glucose tolerance, and advanced liver steatosis. BA transporters were inhibited in HFF, causing the block of internal BA circulation and increased BA secretion via cecum contents and feces. Notably, lithocholic acid (LCA) and its taurine conjugates were elevated within the enterohepatic circulation. Meanwhile, the Clostridium species were significantly altered in both Fru and HFF groups and were closely associated with fructose and BA metabolism. In summary, excessive fructose caused gut dysbiosis and BA alterations, promoting HF-induced NAFLD. The crosstalk between Clostridium sp. and LCA species were potential targets in fructose-mediated NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Male , Non-alcoholic Fatty Liver Disease/metabolism , Bile Acids and Salts/metabolism , Fructose/adverse effects , Fructose/metabolism , Dysbiosis/metabolism , Mice, Inbred C57BL , Liver/metabolism , Diet, High-Fat/adverse effects , Clostridium , Water/metabolism
16.
Signal Transduct Target Ther ; 8(1): 347, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37704615

ABSTRACT

Coronavirus disease 2019 (COVID-19) was first reported three years ago, when a group of individuals were infected with the original SARS-CoV-2 strain, based on which vaccines were developed. Here, we develop six human monoclonal antibodies (mAbs) from two elite convalescents in Wuhan and show that these mAbs recognize diverse epitopes on the receptor binding domain (RBD) and can inhibit the infection of SARS-CoV-2 original strain and variants of concern (VOCs) to varying degrees, including Omicron strains XBB and XBB.1.5. Of these mAbs, the two most broadly and potently neutralizing mAbs (7B3 and 14B1) exhibit prophylactic activity against SARS-CoV-2 WT infection and therapeutic effects against SARS-CoV-2 Delta variant challenge in K18-hACE2 KI mice. Furthermore, post-exposure treatment with 7B3 protects mice from lethal Omicron variants infection. Cryo-EM analysis of the spike trimer complexed with 14B1 or 7B3 reveals that these two mAbs bind partially overlapped epitopes onto the RBD of the spike, and sterically disrupt the binding of human angiotensin-converting enzyme 2 (hACE2) to RBD. Our results suggest that mAbs with broadly neutralizing activity against different SARS-CoV-2 variants are present in COVID-19 convalescents infected by the ancestral SARS-CoV-2 strain, indicating that people can benefit from former infections or vaccines despite the extensive immune escape of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , Broadly Neutralizing Antibodies , Antibodies, Monoclonal , Epitopes/genetics
17.
Eur J Med Chem ; 259: 115678, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37531746

ABSTRACT

Evidence suggests that rapidly evolving virus subvariants risk rendering current vaccines and anti-influenza drugs ineffective. Hence, exploring novel scaffolds or new targets of anti-influenza drugs is of great urgency. Herein, we report the discovery of a series of acylthiourea derivatives produced via a scaffold-hopping strategy as potent antiviral agents against influenza A and B subtypes. The most effective compound 10m displayed subnanomolar activity against H1N1 proliferation (EC50 = 0.8 nM) and exhibited inhibitory activity toward other influenza strains, including influenza B virus and H1N1 variant (H1N1, H274Y). Additionally, druggability evaluation revealed that 10m exhibited favorable pharmacokinetic properties and was metabolically stable in liver microsome preparations from three different species as well as in human plasma. In vitro and in vivo toxicity studies confirmed that 10m demonstrated a high safety profile. Furthermore, 10m exhibited satisfactory antiviral activity in a lethal influenza virus mouse model. Moreover, mechanistic studies indicated that these acylthiourea derivatives inhibited influenza virus proliferation by targeting influenza virus RNA-dependent RNA polymerase. Thus, 10m is a potential lead compound for the further exploration of treatment options for influenza.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Thiourea , Animals , Humans , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Influenza A Virus, H1N1 Subtype/drug effects , Influenza B virus , Influenza, Human/drug therapy , RNA-Dependent RNA Polymerase , Thiourea/analogs & derivatives , Thiourea/chemistry
18.
Cell Insight ; 2(3): 100092, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37398636

ABSTRACT

Proteolysis targeting chimera (PROTAC) degradation of pathogenic proteins by hijacking of the ubiquitin-proteasome-system has become a promising strategy in drug design. The overwhelming advantages of PROTAC technology have ensured a rapid and wide usage, and multiple PROTACs have entered clinical trials. Several antiviral PROTACs have been developed with promising bioactivities against various pathogenic viruses. However, the number of reported antiviral PROTACs is far less than that of other diseases, e.g., cancers, immune disorders, and neurodegenerative diseases, possibly because of the common deficiencies of PROTAC technology (e.g., limited available ligands and poor membrane permeability) plus the complex mechanism involved and the high tendency of viral mutation during transmission and replication, which may challenge the successful development of effective antiviral PROTACs. This review highlights the important advances in this rapidly growing field and critical limitations encountered in developing antiviral PROTACs by analyzing the current status and representative examples of antiviral PROTACs and other PROTAC-like antiviral agents. We also summarize and analyze the general principles and strategies for antiviral PROTAC design and optimization with the intent of indicating the potential strategic directions for future progress.

19.
ACS Omega ; 8(29): 26201-26205, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37521643

ABSTRACT

In the middle and west of Sichuan Basin, the targeted carbonate formation exhibits features of deep burial and high temperatures at present. In order to obtain better acid fracturing results, the efficient gelled acid developed was investigated based on the carbonate formation characteristics. At the same time, the field application was conducted to prove its adaptability and effectiveness. The high-effective thickener is mainly polymerized by DMC and an allyl octadecyl trimethyl ammonium bromide monomer and a very small amount of diallyl polyethylene glycol. The efficient gelled acid has good compatibility with carbonate formation and formation water, and its thermal stability is great that the viscosity could obtain 25 mPa·s at a temperature of 180 °C after shearing at 30 min. Furthermore, compared with conventional gelled acid, the friction reduction rate of efficient gelled acid is higher of over 7-12%. Also, the induced fracture conductivity is more than 20 D·cm at a closure stress of 60 MPa, which is higher than that of conventional gelled acid with 16.81 D·cm. In addition, during the acidification fracturing of Well PS, the efficient gelled acid system exhibits a good friction reduction property. The flow rate could reach 6 m3·min-1 and the obvious pressure drop could be observed, which indicated that the efficient gelling acid reacted with the carbonate formation, creating acidified fractures. The test production of Well PS is 23 × 104 m3·d-1 and the acid fracturing adopted by the efficient gelled acid obtains a great break at a high-temperature carbonate formation.

20.
ACS Macro Lett ; 12(7): 880-887, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37343235

ABSTRACT

Cellulose-based dielectrics with attractive dielectric performance are promising candidates to develop eco-friendly electrostatic energy storage devices. Herein, all-cellulose composite films with superior dielectric constant were fabricated by manipulating the dissolution temperature of native cellulose, where we revealed the relationship among the hierarchical microstructure of the crystalline structure, the hydrogen bonding network, the relaxation behavior at a molecular level, and the dielectric performance of the cellulose film. The coexistence of cellulose I and cellulose II led to a weakened hydrogen bonding network and unstable C6 conformations. The increased mobility of cellulose chains in the cellulose I-amorphous interphase enhanced the dielectric relaxation strength of side groups and localized main chains. As a result, the as-prepared all-cellulose composite films exhibited a fascinating dielectric constant of as high as 13.9 at 1000 Hz. This work proposed here provides a significant step toward fundamentally understanding the dielectric relaxation of cellulose, thus developing high-performance and eco-friendly cellulose-based film capacitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...